
Research Statement

Indranil Ghosh

School of Mathematical and Computational Sciences
Massey University
Palmerston North

New Zealand

July 15, 2023

1 Primary Project

My main topic of research in a broader sense is dynamical systems. I primarily focus on piecewise-
smooth maps, funded under a Marsden grant 18-MAU-017 titled “Organised chaos: Using geometry
to explain robust chaotic dynamics in switched dynamical systems” from Royal Society Te Apārangi.

Piecewise-linear maps can exhibit complicated dynamics yet are relatively amenable to an exact
analysis. For this reason, they provide a useful tool for us to explore complex aspects of dynamical
systems, such as chaos. They arise as approximations to specific types of grazing bifurcations of
piecewise-smooth ODE systems [4], and are used as mathematical models, for example in social
sciences [23]. In our work, we focus our studies on an abstract normal form, known as the border-
collision normal form (a four-parameter family of continuous piecewise-linear maps on R2), given
by

fξ(x, y) =

{(
τLx+ y + 1,−δLx

)
, x ≤ 0,(

τRx+ y + 1,−δRx
)
, x ≥ 0,

(1)

This form includes (up to a change of variables) almost all continuous, piecewise-linear maps with
two pieces, and does so with a minimal number of parameters, see [26]. It describes the dynamics
created in border-collision bifurcations — where a fixed point of a piecewise-smooth map collides
with a switching manifold [4, 25]. In this context, piecewise-linear maps have been used to explain
bifurcations in diverse applications such as power converters [31] and mechanical systems with
stick/slip friction [27]. The family (1) is a normal form in the sense that any non-degenerate,
continuous, two-piece, piecewise-linear map on R2 can be converted to (1) via an affine change of
coordinates [22].

The dynamics of the border-collision normal form can be very rich even in only two dimensions
(i.e. when two scalar variables characterise the state space of the map), see [2, 15, 24]. Banerjee,
Yorke, and Grebogi in their pioneering paper [3] identified an open parameter region ΦBYG ⊂ R4

(to be defined below) throughout which the two-dimensional border-collision normal form has a
chaotic attractor [17]. Region ΦBYG is the region of robust chaos. Robust chaos refers to the
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phenomenon that a family of dynamical systems has a chaotic attractor throughout an open region
of parameter space [30]. This does not occur for generic families of smooth one-dimensional maps
as these have dense windows of periodicity [29], but is typical for systems with sufficiently many
dimensions [18, 19], a well-known example being the Lorenz system [20, 28]. One can impose
further requirements on the robustness, such as that the attractor varies continuously with respect
to Hausdorff distance [16] or Lebesgue measure [1].

My project is organised as follows: In [13], we review the two-dimensional border-collision nor-
mal form and study the region ΦBYG, where the map is invertible, orientation-preserving, and
dissipative (for the most part) and apply renormalisation to partition this region by the number
of connected components of a Chaotic Milnor attractor. This reveals previously undescribed bi-
furcation structure in a succinct way. Next, in [14] we further strengthen the existence of robust
chaos throughout this region satisfying Devaney’s definition of Chaos. We also show that the stable
manifold of a saddle fixed point, despite being a one-dimensional object, densely fills an open region
containing the attractor. Finally, we identify a heteroclinic bifurcation, not described previously, at
which the attractor undergoes a crisis and may be destroyed. In [11] we construct a trapping region
in phase space and an invariant expanding cone in tangent space, showing that the normal form
exhibits a chaotic attractor throughout an open region of parameter space, this time generalising
the construction to include the non-invertible and orientation-reversing normal form. The resulting
parameter region is again open so the chaos is robust within this family of maps. The boundaries of
the parameter region are where the construction fails in some way: three of these boundaries corre-
spond to bifurcations where the chaotic attractor is destroyed, see Fig. 1. I am currently working on
further extending the application of renormalisation to the non-invertible and orientation-reversing
cases and on the identification of robust chaos in the N−dimensional border-collision normal form.

2 Secondary Projects

1. Neurodynamics: Recently my colleagues and I have been working on numerically analysing
the dynamical properties of neuron models like Chialvo neurons [21, 12] and denatured Moris-
Lecar neurons [6] under the influence of electromagnetic flux having various network topolo-
gies. In the future we plan to implement various control strategies to better understand how
these neuron network models perform under various adaptive behaviour.

2. Soccer-data modeling: With my colleagues in University of Central Florida, I recently
wrote a paper on developing a physics-driven kinemetic model for dominance space in soccer
in terms of Voronoi diagrams [5]. We used the freely available Metrica Sports GPS data for
this study. In the future we plan to extend our model to include pass intercepts

3. Quantum Computation: I am a physicist by training and during my masters degree I
published a three-part expository article [8, 9, 10] on Quantum game theory where I reviewed
and discussed the workflow of some famous quantum-game theoretic models. I maintain
a corresponding R-package called QGameTheory [7], available in the CRAN repository. In
terms of future plans, I intend to contribute towards the detection of chaotic dynamics in
quantum mechanical systems, that could have potential applications in the field of quantum
computation.
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Figure 1: A two-parameter bifurcation diagram of (1) with τL = 1.7 and τR = −1.9. The boundary
of Φtrap ∩Φcone is shown in yellow. The coloured regions show the result of a numerical simulation
(white: no attractor; green: chaotic attractor; other colours: periodic attractor). Some periods are
indicated (e.g. in the large pink region the map has a stable period-2 solution. In the blue strip at
the top the fixed point X is stable.
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